
EPFL - Semestre d’Automne 2016-2017 J. Scherer
Algèbre Linéaire Questions personnelles
Microtechnique le 23 janvier 2017

Question 33 (4 points). Soit −→u un vecteur unitaire de Rn et A = −→u−→u T .
1. (1 point) Montrer que −→u est un vecteur propre de A.
2. (1 point) Calculer la dimension du noyau de A, (justifier chaque affirmation !).
3. (1 point) Identifier le noyau de A comme un certain sous-espace orthogonal.
4. (1 point) Conclure des trois points ci-dessus que A est la matrice de la projection orthogonale

sur Vect{−→u }.

(a) On calcule simplement A−→u = (−→u−→u T )−→u = −→u (−→u T−→u ), par associativité de la multiplication
matricielle. Puisque −→u est unitaire, −→u T−→u = ‖−→u ‖2 = 1 si bien que A−→u = −→u .
(b) La i-ème ligne de la matrice A est ui

−→u T . Toutes les lignes sont donc proportionnelles, si bien
que le rang de la matrice A vaut 1 car −→u est non nul. Le Théorème du rang implique alors que le
noyau de A est de dimension n− 1.
(c) On identifie le noyau de A avec Vect{−→u }⊥. Comme Vect{−→u } est de dimension 1, le sous-espace
orthogonal est de dimension n − 1. Il suffit donc de montrer que tout vecteur orthogonal à −→u est
dans le noyau.
Pour cela on calcule comme en (a) pour un vecteur −→v perpendiculaire à −→u que

A−→v = (−→u−→u T )−→v = −→u (−→u T−→v ) = 0

puisque le produit scalaire 〈−→u ,−→v 〉 = −→u T−→v = 0.
(d) La projection orthogonale proj sur la droite Vect{−→u } est la seule application linéaire qui fixe
−→u et envoie Vect{−→u }⊥ sur zéro. La matrice A représente donc cette projection puisqu’elle a les
mêmes propriétés. Idéalement on pourrait construire une base (−→u ,−→u 2, . . . ,−→u n) où les −→u i sont
orthogonaux à −→u . Une application linéaire est complètement déterminée par ce qu’elle fait sur une
base et justement A−→u = proj−→u et A−→u i = proj−→u i pour tout 2 ≤ i ≤ n.



Question 34 (14 points). (a) (4 points) On considère le sous-espace W de R4 donné par l’équation

x1 +2x2 +x3 +2x4 = 0. Les vecteurs −→b 1 =
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de W . Appliquer le procédé de Gram-Schmidt à cette base B pour construire

une base orthogonale de W .
On constate que les vecteurs −→b 1 = −→c 1 et −→b 2 = −→c 2 sont orthogonaux car −→b 1 ·

−→
b 2 = 0. Il

ne reste donc qu’à rendre −→b 3 orthogonal à ces deux premiers vecteurs. On utilise la formule de
Gram-Schmidt
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Et on calcule les quatre produits scalaires
• −→c 1 · −→c 1 = 4 + 1 = 5 = −→c 2 · −→c 2 ;
• −→c 1 ·

−→
b 3 = 2 ;

• −→c 2 ·
−→
b 3 = −2.

On obtient ainsi le vecteur
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On pourra ainsi choisir comme base orthogonale C′ = (−→c 1,

−→c 2,
−→c 3) ou multiplier le dernier vecteur

par 5 pour obtenir une base
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On ne demande pas de rendre les vecteurs unitaires !

(b) (3 points) Calculer le polynôme caractéristique de la matrice A =


3 2 1 2
2 6 2 4
1 2 3 2
2 4 2 6

.
On calcule cA(t) en effectuant des opérations sur les lignes ou sur les colonnes :∣∣∣∣∣∣∣∣∣

3− t 2 1 2
2 6− t 2 4
1 2 3− t 2
2 4 2 6− t

∣∣∣∣∣∣∣∣∣ =L3−L1
L4−L2

∣∣∣∣∣∣∣∣∣
3− t 2 1 2

2 6− t 2 4
t− 2 0 2− t 0

0 t− 2 0 2− t

∣∣∣∣∣∣∣∣∣ =lin. (t−2)2

∣∣∣∣∣∣∣∣∣
3− t 2 1 2

2 6− t 2 4
1 0 −1 0
0 1 0 −1

∣∣∣∣∣∣∣∣∣
On ajoute ensuite la troisième colonne à la première et la quatrième à la deuxième :

cA(t) = (t− 2)2

∣∣∣∣∣∣∣∣∣
4− t 4 1 2

4 10− t 2 4
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣∣∣ =dév. selonL4
dév. selonL3

(t− 2)2
∣∣∣∣∣ 4− t 4

4 10− t

∣∣∣∣∣



Ainsi

cA(t) = (t− 2)2(t2 − 14t + 40− 16) = (t− 2)2(t2 − 14t + 24) = (t− 2)3(t− 12)

(c) (3 points) Calculer une base orthonormée des espaces propres E2 et E12 de la matrice A.
On commence par calculer E2. On voit que

E2 = Ker


1 2 1 2
2 4 2 4
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 = W

où W est l’hyperplan de la partie (a). On a déjà une base orthogonale, il faut encore normaliser les
vecteurs :
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On calcule ensuite E12, soit en résolvant le système directement, soit en se souvenant que cet espace
propre doit être orthogonal à E2 si bien que son vecteur directeur unitaire doit être

−→c 4 =
√

10
10


2
1
2
1



(d) (2 points) Construire une base C et une matrice orthogonale de changement de base U = (Id)Can
C

qui permet de diagonaliser A.
La base orthonormée de R4 cherchée est formée des bases trouvées en ci-dessus :
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
√

5
5


−2

1
0
0

 ,

√
5

5


0
0
−2

1

 ,

√
10

10


−1
−2

1
2

 ,

√
10

10


2
1
2
1




Ainsi la matrice orthogonale est

U =
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(e) (2 points) Donner la formule de changement de base et la forme diagonale de la matrice
congruente à A pour le changement de base du point (d).



La matrice D est la matrice diagonale D =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 12

. Attention à l’ordre des coefficiens

diagonaux, ils doivent correspondre au choix de la base.
La formule de changement de base est D = UT AU = U−1AU ou aussi A = UDUT = UDU−1.


